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Pattern competition and homoclinic crossing

Yu Tan and Jian-min Mao
Department of Mathematics, Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong

~Received 21 May 1997; revised manuscript received 17 September 1997!

We study the mechanism of pattern competition in a system described by the generalized nonlinear Schro¨-
dinger~GNS! equation with periodic boundary conditions. We achieve pattern selection and pattern competi-
tion by applying artificial disturbances in a numerical simulation and observe a correspondence between
pattern competition and homoclinic crossing. This observation is further confirmed by a perturbation analysis
in the neighborhood of the steady-state solution of the GNS equation near the threshold of modulation insta-
bility. The analysis gives an equation for an ‘‘order function’’ based on which we show that the homoclinic
structure exists in the system and that homoclinic crossings are the mechanism for pattern competition.
@S1063-651X~98!09701-3#

PACS number~s!: 05.45.1b, 52.35.Sb
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I. INTRODUCTION

Spatially extended dynamical systems represent m
physical situations in the fields of hydrodynamics, plas
physics, chemistry, biology, etc. Spatial-temporal chaos
space-presented coherence with time-presented chaos a
particular interest@1–4#. Many numerical simulations fo
different systems have provided rich information on chao
behavior. Some perturbation analyses have also been
formed @5,6#. It has been found that formation and compe
tion of spatial coherent structures~patterns! play important
roles in the dynamics of the systems@3,4,7#. In spite of re-
markable progress in pattern dynamics, some fundame
questions are still unanswered. One of them concerns
onset of pattern competition: what is the mechanism of p
tern competition?

To gain insight into this question, we take the followin
one-dimensional generalized nonlinear Schro¨dinger ~GNS!
equation as a model,

i ] tE1]x
2E1~ uEu22guEu4!E50, 0<x<L, t.0,

~1!

whereE(x,t) is the wave function andg is a small param-
eter. This equation arises in such diversified physical c
texts as plasma physics, nonlinear optics, water wave the
vortex filament dynamics, etc.@2,3#. Numerical studies have
discovered that the system has a homoclinic structure@8# and
that there is a thin disorder layer in the neighborhood of
homoclinic orbit@9#.

In this study, the equation serves as a model for ne
integrable Hamiltonian systems that exhibit complex spat
temporal phenomena: chaos in time series and compet
between patterns. We study this equation with the perio
boundary conditionE(x50,t)5E(x5L,t). We first select
patterns and achieve pattern competition in a numer
simulation by properly choosing initial conditions that a
artificial disturbances added to the spatially homogene
steady state. In the simulation we observe a correspond
between pattern competition and homoclinic crossing. T
correspondence is further confirmed by a perturbation an
sis in the neighborhood of the steady-state solution of
571063-651X/98/57~1!/381~7!/$15.00
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GNS equation near the threshold of modulation instabil
The analysis results in an equation for an ‘‘order functio
of time, a(t), which controls evolution of the system. Fro
this analytical result, we show that the system has a
moclinic structure and that the mechanism of pattern com
tition is actually the homoclinic crossings.

This paper is organized as follows. Section II includes
numerical simulation. In Sec. III, we present the perturbat
analysis. Results of the analysis are used in Sec. IV to re
the mechanism of pattern competition. Conclusions
drawn in Sec. V.

II. PATTERN SELECTION AND PATTERN COMPETITION

In this section, we numerically study the GNS equati
~1! with the same periodic boundary condition but with d
ferent initial conditions. Pattern selection and pattern com
tition are induced by properly chosen artificial disturbanc
to the steady-state solution of the GNS equation. Result
the simulation suggest that there is a correspondence
tween pattern competition and homoclinic crossing.

Equation~1! is equivalent to

i ] tE1]x
2E1~ uEu22guEu42uE0u21guE0u4!E50,

0<x<L, t.0, ~2!

whereE05AN is a constant. HereN5* uEu2dx is the total
number of quasi-particles, a conserved quantity. This eq
tion is equivalent to Eq.~1! because the constant terms in E
~2!, 2uE0u21guE0u4, can be moved by the trivial gaug
transformation, E(x,t)→E(x,t)ei (uE0u22guE0u4)t. Conse-
quently, we will work on Eq.~2! instead of Eq.~1!.

Obviously, the equation has a steady-state solution,

E~x,t !5E0 . ~3!

It is easy to show by linearization that this solution is sta
whenL,L0 , whereL05&p/(E0A122gE0

2) is the critical
value of the system’s length, and is unstable whenL.L0 .
381 © 1998 The American Physical Society
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382 57YU TAN AND JIAN-MIN MAO
To gain insight into how to choose proper artificial distu
bances to the steady-state solution so that a desirable pa
will be selected, we first perform linearization near this sp
tially homogeneous steady state.

A. Linearization

Near the steady stateE(x,t)5E0 , the linearized equation
is

] tdE5AdE, ~4!

where

dE5S du
dv D , A5S 0 2]x

2

]x
21k0

2 0
D .

Heredu is the real part ofdE, dv is the image part, and

k05A2E0
2~122gE0

2!. ~5!

The linearized equation~4! has the solution

dE5~c1e2ltX11c2eltX2!coskx, ~6!

wherec1 andc2 are constants,k is the wave number,6l are
the eigenvalues,

l5k2g, g5A~k0 /k!221, ~7!

andX1 andX2 are the eigenvectors respectively correspo
ing to l and2l,

X15S 1
2g D , X25S 1

g D . ~8!

It is easy to see thatl50 whenk5k0 . Sok0 is the critical
value of the wave number for the modulation instability.

B. Numerical simulation

Setting t50 in Eq. ~6!, the initial deviation from the
steady state isdE5(c1X11c2X2)cos(kx). This motivates us
to take the initial condition for the GNS equation~2! as

E~x,t50!5E01eE0~c1X11c2X2!cos~kx!, ~9!

wheree is a small parameter for the disturbance. That is,
initial condition is the steady state with a small artifici
disturbance. There are five possible cases for this form
artificial disturbance depending on the signs ofc1 andc2 : ~i!
c1,0 andc2.0, ~ii ! c1.0 andc2,0, ~iii ! c1.0 andc2
.0, ~iv! c1,0 andc2,0, and~v! c150 but c2Þ0, or c2
50 but c1Þ0. Actually, case~v! corresponds to the ho
moclinic orbit.

Starting from an initial condition in the form of Eq.~9!
with c1 and c2 specified, we integrate Eq.~2! by using the
improved split method of the third order. In the simulatio
we setE052, g50.05 andL51.4L0 ~so k,k0! in Eq. ~2!,
ande50.1 andk50.8k0 in Eq. ~9!.
ern
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-
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For case~i! with c1521.0 andc251.0, the result of the
simulation is shown in Fig. 1~a!. We plot r(x,t), which is
defined byE(x,t)5Ar(x,t)eiu(x,t) and is called the ‘‘square
root’’ amplitude@u(x,t) is the phase function#. It can be seen
from the figure that a ‘‘caviton’’ in the middle of the spac
(x5L/2) disappears and reappears periodically over tim
This pattern will be called pattern type I. Figure 1~b! is for
case~ii ! with c151.0, c2521.0. In the figure, a ‘‘soliton’’
disappears and reappears periodically atx5L/2. This pattern
will be called type II. The periodic appearance of the cavit
or soliton is due to the Fermi-Pasta-Ulam recurrence@10#.

Figures 2~a! and 2~b! are for case~iii ! with c151.0 and
c251.0, and for case~iv! with c1521.0 andc2521.0, re-
spectively. We observe a regular composition of patt
types I and II. Patterns seen in Figs. 2~a! and 2~b! are the
same except with a phase shift.

Figure 3~a! is obtained by settingc151.0, c2520.4 in
Eq. ~9!. This initial condition is closer to the homoclini
orbit than the other cases studied above. As shown in
figure, pattern types I and II appear randomly: no single p
tern dominates another and it is impossible to predict w
pattern type will emerge in the next moment. We thus s
that there is a pattern competition.

Figures 1~c!, 2~c!, and 3~b! are plots in phase space, i.e
r(0,t) versus (d/dt)r(0,t). In Fig. 1~c!, if the initial condi-
tion is at a point on the right island@for case~i!#, then the
motion will stay on the right island. On the other hand,
motion starts at a point on the left island@for case~ii !#, then
it will remain on the island. In Fig. 2~c!, we start at a point
on an enclosing invariant torus and the motion will stay
the torus. If the starting point is on the upper~lower! part of
the torus, then we have case~iii ! @case~iv!#. For all these
cases~i!–~iv!, there are no homoclinic crossings nor patte
competition. In Fig. 3~b!, however, we start at a point on th
disorder layer around the homoclinic orbit, homoclinic cros
ings occur and pattern competition is achieved. This sugg
that there may be a correspondence between pattern co
tition and homoclinic crossing: if there is a pattern compe
tion, then there are homoclinic crossings~Fig. 3!; otherwise,
there is no homoclinic crossing~Figs. 1 and 2!. This corre-
spondence will be confirmed by an analysis presented in
following sections.

III. PERTURBATION ANALYSIS

In this section, we present a perturbation analysis for
system described by the GNS equation~2! with the periodic
boundary condition. The initial condition will not be explic
itly given in the analysis. Instead, a function,a(t), which
depends on the initial condition, is introduced. An equat
for a(t) is obtained as a result of the analysis. The appro
mate solution given by the perturbation analysis agrees w
with the numerically determined exact solution, as shown
Fig. 4.

The perturbation analysis is performed in the neighb
hood of the steady-state solution of the GNS equation~2!
and near the threshold of modulation instability. We consi
the problem in the extended state space (r,u,k,v), wherer
andu are the square-root amplitude and the phase functio
the wave function as defined previously,E(x,t)
5Ar(x,t)eiu(x,t), k52p/L is the wave number andv is the
fundamental frequency of the system. Hence our pertur
tion analysis is in the neighborhood of the following point
the extended state space,
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FIG. 1. The square-root amplitude functionr(x,t)5uE(x,t)u2 given by the numerical simulation~a! for case~i! and~b! for case~ii ! of
the initial condition in the form of Eq.~9!. The pattern exhibited in~a! is called type I and pattern in~b! called type II. Note that there is no
pattern competition.~c! Homoclinic structure in the phase space@r(0,t) vs dr(0,t)/dt#. Note that there is no homoclinic crossing.
in
n

bi

in
ys

-

-

by
e
n the
~r0 ,u0 ,k0 ,v0!5@ uE0u2,0,A2uE0u2~122guE0u2!,0#,
~10!

where (r,u)5(r0 ,u0) is the steady-state solution given
Eq. ~3!, k5k0 is the critical wave number for the modulatio
instability given in Eq.~5!, andv5v050 is the frequency
for the steady-state on the threshold of modulation insta
ity. In the neighborhood of (r0 ,u0 ,k0 ,v0), the variables can
be expanded in series, i.e.,

r5r01er11e2r21e3r31••• ,

u5eu11e2u21e3u31••• ,
~11!

k5k01ek11e2k21e3k31••• ,

v5ev11e2v21e3v31••• ,

wheree is the perturbation parameter and will be set to 1
the final stage. We have performed the perturbation anal
l-

is

and found thatv i is involved only in the ratiov i /v1 for i
51,2, . . . . For thesake of simplicity, we therefore intro
duce the scaled frequencyv85v/v15e(11ev281e2v38
1•••), wherev i85v i /v1 for i 52,3, . . . .

Equations forr(x,t) andu(x,t) are, from the GNS equa
tion ~2!,

k2F]x
2r2

~]xr!2

2r
22r~]xu!2G

5v82r] tu2~r2gr22r01gr0
2!2r,

~12!

k2F]x
2u1

~]xu!~]xr!

r G52v8
1

2r
] tr.

Here we have changed the space and time variables
x→x85kx and t→t85v8t. We have assumed that thes
changes have been made and have dropped the primes o
variables.
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FIG. 2. Similar to Fig. 1 but~a! for case~iii ! and~b! for case~iv!. The patterns for the two cases are identical, except with a phase
They are a regular combination of pattern types I and II. Note that there is no pattern competition.~c! Homoclinic structure in the phas
space. Note that there is no homoclinic crossing
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Substituting Eq.~11! into Eq. ~12!, we obtain two equa-
tions for each order ine. To the zeroth order ine, Eqs.~12!
gives the steady-state solution. For the first order ine, one
gets

]x
2r11r150,

~13!

]x
2u150.

These equations have solutionsr15a(t)cos@x1f(t)# and
u15b(t)1xs(t), wherea(t), b(t), f(t), ands(t) depend
on the initial conditions. In this study, we are interested o
in the case where the system has spatial reflection symm
aboutx50. Therefore the solutions for the first order ine are

r15a~ t !cos~x!,
~14!

u15b~ t !.

For the second order ine, we have
y
try

]x
2r21r25

1

122gr0
F] tb1S g2

1

4r0
Da2G

1
2k1

A2r0~122gr0!
a cos~x!

1
1

122gr0
F2g2

3

4r0
Ga2cos~2x!, ~15!

]x
2u252

1

2r0k0
2 ] ta~ t !cos~x!.

The coefficient of cos(x) in the first equation has to be zer
~that is,k150! for its solution to satisfy the periodic bound
ary condition. We must also set the background terms in
first equation to zero in order to satisfy the conservation
quasiparticles, i.e.,] tb1(g21/4r0)a250, or
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FIG. 3. Similar to Fig. 1 but for cases~v!. ~a! The square-root amplitude function. Note the pattern competition between types I a
~b! Homoclinic structure in the phase space. Note that homoclinic crossings occur.
l
e

b~ t !5
124gr0

4r0
E

0

t

a2~ t !dt. ~16!

Therefore the solution of Eq.~15! is

r25
a2

3k0
2 S 3

2
24gr0D cos~2x!,

~17!

u25
1

2r0k0
2 ] ta cos~x!.

For the third order ine, Eq. ~12! gives

]x
2r31r35

56gr0280g2r0
229

6k0
4 a3cos~3x!

1
1

k0
4 F] t

2a1
3216g2r0

2

6
a312k0

3k2aG
3cos~x!1k0

2~3212gr0!a2v28 ,

]x
2u35

1

k0
2 F 4g

3k0
22

12k0
2

2r0k0
2G] tacos~2x!.

~18!

In the first equation, the conservation of the quasipartic
requiresv2850, and the periodic boundary condition requir
the coefficient of cosx also to be zero, i.e.,
es
s

] t
2a1

3216g2r0
2

6
a312k0

3dka50. ~19!

Here we have replacedk2 by dk5k2k0 sincek150. This is
an equation fora(t). The solutions of Eq.~18! are

r35
1

48k0
4 ~9180g2r0

2256gr0!a3cos~3x!,

~20!

u35
1

2k0
2 F 12k0

2

2r0k0
22

4g

3k0
2G] ta

2cos~2x!.

Therefore the solutions of Eq.~12! up to the third order in
e are, after changing the variables (x,t) back to (kx,v8t)
and settinge51,

r~x,t !5r01a~ t !cos~kx!1
1

3k0
2 S 3

2
24gr0Da2~ t !cos~2kx!

1
1

48k0
4 ~9180g2r0

2256gr0!a3~ t !cos~3kx!,

u~x,t !5
124gr0

4r0
E

0

t

a2~ t !dt1
1

2r0k0
2 ] ta~ t !cos~kx!

1
1

2k0
2 F 12k0

2

2r0k0
22

4g

3k0
2G] ta

2~ t !cos~2kx!,

~21!

where a(t) satisfies Eq.~19!. Note thatv851 up to the
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386 57YU TAN AND JIAN-MIN MAO
second order ine because ofv2850 and that the form of Eq
~19! remains unchanged even after changing the time v
able t back to (v8t).

To see how good the approximation formula~21! is, we
compare it with the numerically determined exact solution
the initial-boundary value problem. The numerical compa
son is done for the GNS equation~2! where E052, g
50.05, andL52p/(0.95k0)52p/@0.95A2E0

2(122gE0
2)#,

with periodic boundary condition and with the initial cond
tions implicitly given bya(t50)50.8 and] ta(t50)50. In
determining the exact solution, we first substitute the ini
values ofa and] ta into Eq.~21! to find the initial condition
E(x,0)5Ar(x,0)eiu(x,0) for the GNS equation. With this ini-
tial condition and the periodic boundary condition, the GN
equation~2! is then numerically integrated in the same w
as we did in Sec. II. The results are shown as the solid cu
in Fig. 4. For the approximate solution, we first numerica
solve the initial value problem fora(t), i.e., Eq.~19! with
the initial conditionsa(t50)50.8 and] ta(t50)50. Using
Eq. ~21!, we then obtain the approximate solution shown
the dotted curves in Fig. 4.

In Fig. 4, we plot the exact and the approximate squa
root amplituder(x,t) at two points in space,x50 and x
5L/2. It can be seen from the figure that the perturbat
analysis gives a good approximation to the exact solutio

IV. PATTERN COMPETITION AND HOMOCLINIC
STRUCTURE

Let us consider a spatial shift byL/2 in the initial condi-
tion of Eq. ~9!. The shift causes a switch between cases~i!
and ~ii ! of the initial condition, that is, a switch betwee
pattern types I and II,

FIG. 4. Comparison between the approximation given by
perturbation analysis and the numerically determined exact solu
of the initial-boundary value problem. The square-root amplitu
at x50 andx5L/2 are plotted. The exact~approximate! solution is
given by the solid~dotted! curves.
i-

f
-

l

es

s

-

n

r~ I!S x1
L

2
,t50D5r~ II !~x,t50!, ~22!

wherer is decorated by pattern type. This relation holds
later times because the equation of motion and the boun
condition are both invariant under a translation in spa
Therefore

r~ I!S x1
L

2
,t D5r~ II !~x,t !. ~23!

On the other hand, it is clear from Eq.~21! that the time
dependence ofr(x,t) is solely on the order functiona(t).
Therefore we define r̄ (I)

„x,a(t)…5r (I) (x,t) and
r̄ (II)

„x,a(t)…5r (II) (x,t). From Eqs.~21! and ~23!, we have

r̄ ~ I!
„x,2a~ t !…5 r̄ ~ II !

„x,a~ t !…. ~24!

This relation indicates that it is the sign ofa(t) that deter-
mines which type of pattern will appear. Whenevera(t)
changes its sign, the pattern type changes. Ifa(t) changes
sign randomly, pattern alternates between types I and II r
domly, and pattern competition occurs.

a(t) is given by the differential equation~19!, which can
be considered as the equation of motion for a Hamilton
system whose Hamiltonian function is

H~a,p!5
p2

2
1V~a!, V~a!5

3216g2r0
2

24
a41k0

3dka2,

~25!

wherep5da/dt. Whendk.0, the potentialV(a) is for a
single well. Note that we only consider the case forg small
so thatg,)/(4E0

2). Whendk,0, however, the potential is
a double-wellpotential. Hencedk50 ~i.e., k5k0! is a criti-
cal point. This critical valuek0 has been previously obtaine
from the linear stability analysis shown in Sec. II. This is t
threshold of modulation instability.

Whendk,0, the double-well potential has a local max
mum ata50, a well in the regiona.0, and another well in
a,0. In the phase space~the ap plane!, this implies that
there is a homoclinic orbit with two islands jointed at th
origin, one island in the regiona.0 and the other ina
,0. Since the sign ofa(t) determines the type of pattern fo
our original system~described by the GNS equation~2! with
the periodic boundary condition!, the original system has a
homoclinic structure.

The Hamiltonian of Eq.~25!, obtained in the perturbation
analysis up to the third order ine, represents an integrabl
Hamiltonian system. Performing the perturbation analysis
a sufficiently higher order, however, Eq.~25! with the
higher-order terms should represent a nearly integra
Hamiltonian system because the original GNS equation~2! is
nearly integrable. There is a thin disorder layer in the nei
borhood of the homoclinic orbit for the system described
the GNS equation. The motion in this disorder layer cau
random homoclinic crossings. Homoclinic crossing impli
alternating between the two wells of the double-well pote
tial, sign changing ina(t), and therefore switching betwee
the two pattern types.

e
n
s
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From analysis presented above, it is clear that homocl
crossings are the underlying mechanism for pattern com
tition in the system described by the GNS equation with
periodic boundary condition. Similar analysis can be do
for other systems.

V. CONCLUSION

Artificial disturbances applied to the steady-state solut
of the equation of motion can be used to select desira
patterns or to achieve pattern competition in a numer
simulation. The simulation for the system described by
GNS equation~1! reveals the correspondence between p
tern competition and homoclinic crossing.

The perturbation analysis in the neighborhood of
steady-state solution of the GNS equation near the thres
ic
e-
e
e

n
le
l

e
t-

e
ld

of the modulation instability gives the equation for the ord
function a(t). Based on this equation, existence of h
moclinic structure of the system can be shown and the c
respondence between homoclinic crossing and pattern c
petition can be understood. The homoclinic crossings in ti
series are the mechanism of pattern competition.

Although this study is restricted to the GNS equation w
the periodic boundary condition, we believe that the meth
used here can be applied to more general physical situat
and similar conclusions are expected.
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