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Pattern competition and homoclinic crossing
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We study the mechanism of pattern competition in a system described by the generalized nonlinear Schro
dinger (GNS) equation with periodic boundary conditions. We achieve pattern selection and pattern competi-
tion by applying artificial disturbances in a numerical simulation and observe a correspondence between
pattern competition and homoclinic crossing. This observation is further confirmed by a perturbation analysis
in the neighborhood of the steady-state solution of the GNS equation near the threshold of modulation insta-
bility. The analysis gives an equation for an “order function” based on which we show that the homoclinic
structure exists in the system and that homoclinic crossings are the mechanism for pattern competition.
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[. INTRODUCTION GNS equation near the threshold of modulation instability.
The analysis results in an equation for an “order function”

Spatially extended dynamical systems represent mangf time, «(t), which controls evolution of the system. From
physical situations in the fields of hydrodynamics, plasmathis analytical result, we show that the system has a ho-
physics, chemistry, biology, etc. Spatial-temporal chaos andoclinic structure and that the mechanism of pattern compe-
space-presented coherence with time-presented chaos aretitibn is actually the homoclinic crossings.
particular interesf1—4]. Many numerical simulations for This paper is organized as follows. Section Il includes the
different systems have provided rich information on chaoticnumerical simulation. In Sec. lll, we present the perturbation
behavior. Some perturbation analyses have also been panalysis. Results of the analysis are used in Sec. IV to reveal
formed[5,6]. It has been found that formation and competi-the mechanism of pattern competition. Conclusions are
tion of spatial coherent structurépattern$ play important  drawn in Sec. V.
roles in the dynamics of the systerf®4,7]. In spite of re-
markable progress in pattern dynamics, some fundamentﬁl
guestions are still unanswered. One of them concerns the
onset of pattern competition: what is the mechanism of pat- In this section, we numerically study the GNS equation
tern competition? (1) with the same periodic boundary condition but with dif-

To gain insight into this question, we take the following ferent initial conditions. Pattern selection and pattern compe-
one-dimensional generalized nonlinear Sdmger (GNS) tition are induced by properly chosen artificial disturbances

PATTERN SELECTION AND PATTERN COMPETITION

equation as a model, to the steady-state solution of the GNS equation. Results of
the simulation suggest that there is a correspondence be-
i, E+02E+ (|E|>—g|E|YE=0, O0=x<L, t>0, tween pattern competition and homoclinic crossing.
(§0)] Equation(1) is equivalent to
whereE(x,t) is the wave function and is a small param- i ,E+ 92E+ (|E|?>—g|E|*—|Eo|2+g|Eo|HE=0,

eter. This equation arises in such diversified physical con-
texts as plasma physics, nonlinear optics, water wave theory,
vortex filament dynamics, etf2,3]. Numerical studies have
discovered that the system has a homoclinic strud@jrand
that there is a thin disorder layer in the neighborhood of thevhereEy= /N is a constant. Her&l= [|E|?dx is the total
homoclinic orbit[9]. number of quasi-particles, a conserved quantity. This equa-
In this study, the equation serves as a model for nearlyion is equivalent to Eq1) because the constant terms in Eq.
integrable Hamiltonian systems that exhibit complex spatial{2), —|Eq|?+g|Eq|* can be moved by the trivial gauge
temporal phenomena: chaos in time series and competitiofignsformation, E(X,t)ﬂE(X,t)ei(\Eolz—g\Eol“)t. Conse-
between patterns. We study this equation with the periodigyently, we will work on Eq(2) instead of Eq(1).

boundary conditionE(x=0t)=E(x=L,t). We first select " Qpviously, the equation has a steady-state solution,
patterns and achieve pattern competition in a numerical

simulation by properly choosing initial conditions that are
artificial disturbances added to the spatially homogeneous
steady state. In the simulation we observe a correspondence
between pattern competition and homoclinic crossing. Thidt is easy to show by linearization that this solution is stable
correspondence is further confirmed by a perturbation analywhenL<L,, whereL,=v2m/(Eq\1—2g EOZ) is the critical

sis in the neighborhood of the steady-state solution of thealue of the system’s length, and is unstable wherl ;.

0=x<L, t>0, (2

E(X,t):Eo. (3)
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To gain insight into how to choose proper artificial distur-  For case(i) with ¢c;=—1.0 andc,= 1.0, the result of the
bances to the steady-state solution so that a desirable pattesimulation is shown in Fig. (). We plot p(x,t), which is
will be selected, we first perform linearization near this spa-defined byE(x,t) = \/p(x,t)e' *! and is called the “square-

tially homogeneous steady state. root” amplitude[ 8(x,t) is the phase functidnlt can be seen
from the figure that a “caviton” in the middle of the space
A. Linearization (x=L/2) disappears and reappears periodically over time.

) . ) This pattern will be called pattern type I. Figurélis for
Near the steady staf&(x,t) =E,, the linearized equation case(ji) with ¢,= 1.0, c,= — 1.0. In the figure, a “soliton”

1S disappears and reappears periodically=at /2. This pattern
will be called type II. The periodic appearance of the caviton
3,6E=AGE, (4) or soliton is due to the Fermi-Pasta-Ulam recurrejidd.
Figures Za) and Zb) are for casdiii) with ¢c;=1.0 and
where c,=1.0, and for casév) with ¢;=—1.0 andc,=—1.0, re-

spectively. We observe a regular composition of pattern
0 _ 2 types | and Il. Patterns seen in FiggaRand 2b) are the
5“) A= x same except with a phase shift.
ov)’ 2+k? 0 ) Figure 3a) is obtained by setting;=1.0, c,=—0.4 in
Eqg. (9). This initial condition is closer to the homoclinic
Here éu is the real part oSE, év is the image part, and orbit than the other cases studied above. As shown in the
figure, pattern types | and Il appear randomly: no single pat-
Ko \/m ) tern dominates another and it is impossible to predict what
0 0 9Eo)- pattern type will emerge in the next moment. We thus say
that there is a pattern competition.
Figures 1c), 2(c), and 3b) are plots in phase space, i.e.,
p(0t) versus @/dt)p(0,t). In Fig. 1(c), if the initial condi-
SE=(cie” MX;+ceMXp)cokx, (6)  tion is at a point on the right islandor case(i)], then the
] motion will stay on the right island. On the other hand, if
wherec; andc, are constants is the wave number-\ are  motion starts at a point on the left islafidr case(ii)], then

oE=

The linearized equatiofd) has the solution

the eigenvalues, it will remain on the island. In Fig. @), we start at a point
on an enclosing invariant torus and the motion will stay on
A=k2y, y=1[(ko/k)?2—1 7) the torus. If the starting point is on the upptower) part of

the torus, then we have caséé) [case(iv)]. For all these
andX, andX, are the eigenvectors respectively correspond—cases(')___('v)’ there are no homoclinic crossings nor pattern
ing to A and — X, competition. In Fig. &), however, we start at a point on the
disorder layer around the homoclinic orbit, homoclinic cross-
ings occur and pattern competition is achieved. This suggests
X :< 1 ) X :(1) ®) that there may be a correspondence between pattern compe-
17\ =) 27\ y)- tition and homoclinic crossing: if there is a pattern competi-
tion, then there are homoclinic crossin@sg. 3); otherwise,
It is easy to see that=0 whenk=Kk,. Sokj is the critical there is no homoclinic crossingrigs. 1 and 2 This corre-
value of the wave number for the modulation instability. ~ spondence will be confirmed by an analysis presented in the
following sections.

B. Numerical simulation Ill. PERTURBATION ANALYSIS

Settingt=0 in Eq. (6), the initial deviation from the
steady state i$E=(c;X;+C,X5)coskX). This motivates us
to take the initial condition for the GNS equati¢?) as

In this section, we present a perturbation analysis for the
system described by the GNS equati@nwith the periodic
boundary condition. The initial condition will not be explic-
itly given in the analysis. Instead, a functioa(t), which

E(x,t=0)=Eg+ eEg(Cc1 X1+ C2X3)cogkX), (9 depends on the initial condition, is introduced. An equation

) ) ) for «(t) is obtained as a result of the analysis. The approxi-
wheree is a small parameter for the disturbance. That is, thenate solution given by the perturbation analysis agrees well
initial condition is the steady state with a small artificial with the numerically determined exact solution, as shown in
disturbance. There are five possible cases for this form ofig. 4.
artificial disturbance depending on the signspfindc,: (i) The perturbation analysis is performed in the neighbor-
c,<0 andc,>0, (ii) ¢;>0 andc,<0, (iii) c;>>0 andc, hood of the steady-state solution of the GNS equat®n
>0, (iv) ¢;<0 andc,<0, and(v) ¢c;=0 butc,#0, orc, and near the threshold of modulation instability. We consider
=0 but c;#0. Actually, case(v) corresponds to the ho- the problem in the extended state spaged(k,w), wherep
moclinic orbit. and @ are the square-root amplitude and the phase function of

Starting from an initial condition in the form of Eq9) the wave function as defined previouslyE(x,t)
with ¢, andc, specified, we integrate E42) by using the = /p(x,t)e'?*V k=2=/L is the wave number and is the
improved split method of the third order. In the simulation fundamental frequency of the system. Hence our perturba-
we setEy=2,g=0.05 andL=1.4L, (sok<kop) in Eq. (2), tion analysis is in the neighborhood of the following point in
ande=0.1 andk= 0.8, in Eq. (9). the extended state space,
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FIG. 1. The square-root amplitude functipfix,t) =|E(x,t)|? given by the numerical simulatiofa) for case(i) and(b) for case(ii) of
the initial condition in the form of Eq(9). The pattern exhibited ife) is called type | and pattern itb) called type Il. Note that there is no
pattern competition(c) Homoclinic structure in the phase spd@€0,t) vs dp(0,t)/dt]. Note that there is no homoclinic crossing.

(po. 00K, 00) =[|Eol2.0.V2[Eo|2(1—29|Eq|?),0], and found thatw; is involved only in the ratiow;/w, for i
(10) =1,2,... . For thesake of simplicity, we therefore intro-
duce the scaled frequency’=w/w,=e(1+ ew)+ e?w}
where (p,6)=(po.0o) is the steady-state solution given in ...y whereo! =w;/w, fori=2,3,... .
Eq. (3), k=k is the critical wave number for the modulation  Equations forp(x,t) and 6(x,t) are, from the GNS equa-
instability given in Eq.(5), andw=w,=0 is the frequency {jon (2),
for the steady-state on the threshold of modulation instabil-
ity. In the neighborhood ofdy, 64,Kq,wg), the variables can

. . . 2
be expanded in series, i.e., kz[ op—

(axp)z p 2}
2p X

2 3
p=poteEpit€eprtepgt -, 2
=w'2pd0—(p—9p°—po+9ps)2p,

2 3 (12
92601+6 02+€ 03“1‘"' y
(11 o 2 (9x0)(dxp) , 1
, 3 k2| 920+ —————|=—w' — dip.
k:ko+ 6k1+6 k2+€ k3+"‘ y 2p
w=€ewi+ Ewyt Ewgt e, Here we have changed the space and time variables by

x—x'=kx andt—t'=w't. We have assumed that these
wheree is the perturbation parameter and will be set to 1 inchanges have been made and have dropped the primes on the
the final stage. We have performed the perturbation analysigariables.
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P(X: t)

P(Xv t)

dp(0, Byt
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FIG. 2. Similar to Fig. 1 bufa) for case(iii) and(b) for case(iv). The patterns for the two cases are identical, except with a phase shift.
They are a regular combination of pattern types | and Il. Note that there is no pattern compgdjtidomoclinic structure in the phase
space. Note that there is no homoclinic crossing

Substituting Eq(11) into Eq. (12), we obtain two equa- ) 1 1 )
tions for each order ir. To the zeroth order ir, Egs.(12) (&Pz*‘ﬂfm (9t,3+( - E) @
gives the steady-state solution. For the first ordeg,ione 0 0
gets 2k,
’ 0 + W o COSX)
oy +pr=0, V200 1-20p0)
xP1T P1 13 Po dpro
1
3561=0. +—[ — —|a’cog 2x 15

These equations have solutiopg= a(t)cogx+¢(t)] and
0,=B(1) +xo(t), wherea(t), B(t), ¢(t), ando(t) depend

on the initial conditions. In this study, we are interested only
in the case where the system has spatial reflection symmetry
aboutx=0. Therefore the solutions for the first ordereare

1
920,= — —— d.a(t)cogX).
x 2 2p0k(2) ra(t)cogx)

p1=a(t)cogx) The coefficient of cos in the first equation has to be zero
(14  (that is,k;=0) for its solution to satisfy the periodic bound-
6,=B(1). ary condition. We must also set the background terms in the

first equation to zero in order to satisfy the conservation of
For the second order ig, we have quasiparticles, i.e 4,8+ (g— 1/4p,) a®>=0, or
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P(X: t)

(@)

dp(0, 1)/t
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FIG. 3. Similar to Fig. 1 but for casds). (a) The square-root amplitude function. Note the pattern competition between types | and Il
(b) Homoclinic structure in the phase space. Note that homaoclinic crossings occur.

(t)= 2-49r0 fotaz(t)dr. (16)

4pg

3_1®2p2
(9t2a+ TO

o+ 2k38ka=0. (19
Therefore the solution of Eq15) is Here we have replacdd by sk=k—k, sincek,;=0. This is

an equation for(t). The solutions of Eq(18) are
2

a‘ [ 3
- | Z_ 1
P2 3|(S (2 49Po)c0£{2x), p?’:W (9+8%2pg—569p0)a3C033X),
17 480 (20)
1 [1-kZ 4g
0,= dia COSX). — 0_ 2
2 2Pokoz t g 03 _22k0 _zzpoko _23ko dra“Ccog 2X).

For the third order ire, Eq. (12) gives Therefore the solutions of E¢L2) up to the third order in

€ are, after changing the variableg,{) back to kx,w't)
569p9— 80g2p3—9 and settinge=1,
Tzpatps= i a’cog3x)
i (x0)=po+alt) s(k>+1(34 )Zm 42kx)
X, t)= a(t)cogkx = a“(t)cog 2kx
, 3_1692pg , p Po 3_kg 2 dpo
+F (?ta-l-TaS—i-Zkokza 1
0
+ —— (9+80g%p2—56gp,) 3(t)cog 3kx),
x cogx) + k3(3— 12gpg) e, (18) 48K 0 °
1-4 t 1 (21
149 1-K3 e(x,t)zﬂfaz(t)dr+—25ta(t)cos(kx)
(7X03:E2 3—kz—ﬂz &taCOS{ZX). 4P0 0 2P0k0
0 0 PoKo

1-k3 4g

1
In the first equation, the conservation of the quasiparticles —ZpOkS_ 3_k(2)

+ JRE—

2k3

requiresw, =0, and the periodic boundary condition requires 0
the coefficient of cog also to be zero, i.e.,

dra®(t)cog 2kx),

where «(t) satisfies Eq.(19). Note thatw’=1 up to the
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(1
p 2

L
X+—,t=0>=p(”)(x,t=0), (22

wherep is decorated by pattern type. This relation holds for
later times because the equation of motion and the boundary
condition are both invariant under a translation in space.
Therefore

=pM(x,t). (23

L
M x+ —
p (X 2,t

On the other hand, it is clear from E¢R1) that the time
dependence op(x,t) is solely on the order function(t).

Therefore  we  define p"(x,a(t))=p"(x,t) and
P (x,a(t))=p" (x,t). From Egs.21) and(23), we have

PV, = a(t)=p™(x,a(t)). (24)
L o5 1 15 > 25 s Py ! This relation indicates that it is the sign eft) that deter-
t mines which type of pattern will appear. Wheneweft)

changes its sign, the pattern type changesy(if) changes
FIG. 4. Comparison between the approximation given by thesign randomly, pattern alternates between types | and Il ran-
perturbation analysis and the numerically determined exact solutiodomly, and pattern competition occurs.
of the initial-boundary value problem. The square-root amplitudes «(t) is given by the differential equatiof19), which can
atx=0 andx=L/2 are plotted. The exa¢approximatgsolutionis  be considered as the equation of motion for a Hamiltonian

given by the soliddotted curves. system whose Hamiltonian function is

second order ire because ofv;=0 and that the form of Eq. p? 3—16g°%p3 4 1 3a 2
(19) remains unchanged even after changing the time vari-H(a.p)=%5+V(a), V(a)=——F,— a’+kpdka",
ablet back to @'t). (25)

To see how good the approximation formyfd) is, we

compare it with the numerically determined exact solution ofhere p=da/dt. When sk>0, the potentiaV(«) is for a
the initial-boundary value problem. The numerical compari-single well. Note that we only consider the case dosmall
son is done for the GNS equatio2) where Eg=2, g sg thatg<v3/(4E2). Whensk<0, however, the potential is
=0.05, andL=27/(0.9%)=27/[0.95y2E5(1-29E)],  adouble-wellpotential. Hencesk=0 (i.e., k=ko) is a criti-
with periodic boundary condition and with the initial condi- ca| point. This critical valud, has been previously obtained
tions implicitly given bya(t=0)=0.8 andd,«(t=0)=0.In  from the linear stability analysis shown in Sec. Il. This is the
determining the exact solution, we first substitute the initialhreshold of modulation instability.
values ofa andd,« into Eq.(21) to find the initial condition When 8k<0, the double-well potential has a local maxi-
E(x,0)=Vp(x,0)e'"*? for the GNS equation. With this ini- mum ata=0, a well in the regionx>0, and another well in
tial condition and the periodic boundary condition, the GNSy<0. In the phase spacdghe ap plane, this implies that
equation(2) is then numerically integrated in the same waythere is a homoclinic orbit with two islands jointed at the
as we did in Sec. II. The results are shown as the solid curvegrigin, one island in the regiom>0 and the other inx
in Fig. 4. For the approximate solution, we first numerically <0. Since the sign of(t) determines the type of pattern for
solve the initial value problem fow(t), i.e., EQ.(19) with  our original systentdescribed by the GNS equati¢®) with
the initial conditionsa(t=0)=0.8 andd;a(t=0)=0. Using  the periodic boundary conditidnthe original system has a
Eqg. (21), we then obtain the approximate solution shown ashomoclinic structure.
the dotted curves in Fig. 4. The Hamiltonian of Eq(25), obtained in the perturbation
In Fig. 4, we plot the exact and the approximate squareanalysis up to the third order ig represents an integrable
root amplitudep(x,t) at two points in spacex=0 andx  Hamiltonian system. Performing the perturbation analysis to
=L/2. It can be seen from the figure that the perturbationa sufficiently higher order, however, E¢25) with the
analysis gives a good approximation to the exact solution. higher-order terms should represent a nearly integrable
Hamiltonian system because the original GNS equd@pis
nearly integrable. There is a thin disorder layer in the neigh-
borhood of the homaoclinic orbit for the system described by
the GNS equation. The motion in this disorder layer causes
Let us consider a spatial shift y'2 in the initial condi- random homoclinic crossings. Homoclinic crossing implies
tion of Eq. (9). The shift causes a switch between ca@gs alternating between the two wells of the double-well poten-
and (ii) of the initial condition, that is, a switch between tial, sign changing irx(t), and therefore switching between
pattern types | and II, the two pattern types.

IV. PATTERN COMPETITION AND HOMOCLINIC
STRUCTURE
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From analysis presented above, it is clear that homocliniof the modulation instability gives the equation for the order
crossings are the underlying mechanism for pattern compdunction «(t). Based on this equation, existence of ho-
tition in the system described by the GNS equation with themoclinic structure of the system can be shown and the cor-
periodic boundary condition. Similar analysis can be donaespondence between homoclinic crossing and pattern com-
for other systems. petition can be understood. The homoclinic crossings in time

series are the mechanism of pattern competition.
V. CONCLUSION Although this study is restricted to the GNS equation with

the periodic boundary condition, we believe that the method

Artificial disturbances applied to the steady-state solution;seq here can be applied to more general physical situations
of the equation of motion can be used to select desirablgng similar conclusions are expected.

patterns or to achieve pattern competition in a numerical
simulation. The simulation for the system described by the
GNS equation(1) reveals the correspondence between pat-
tern competition and homoclinic crossing. This work was partially supported by the Research Grant

The perturbation analysis in the neighborhood of theCommittee of Hong Kong under Grant Nos. HKUST606/95P
steady-state solution of the GNS equation near the thresholhd DAG94/95.SCO01.
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